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Long, cylindrical metal nanowires have recently been observed to form and be stable for seconds at a time
at room temperature. Their stability and structural dynamics is well described by a continuum model, the
nanoscale free-electron model, which predicts cylinders in certain intervals of radius to be linearly unstable. In
this paper, I study how a small, localized perturbation of such an unstable wire grows exponentially and
propagates along the wire with a well-defined front. The front is found to be pulled and forms a coherent
pattern behind it. It is well described by a linear marginal stability analysis of front propagation into an
unstable state. In some cases, nonlinearities of the wire dynamics are found to trigger an invasive mode that
pushes the front. Experimental procedures that could lead to the observation of this phenomenon are suggested.
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I. INTRODUCTION

Front propagation into unstable states occurs in many ar-
eas of physics, chemistry, and biology �see Ref. �1� for a
recent review� and is often related to pattern formation
mechanisms. In this paper, I show that metal nanowires,
whose dynamics can be described by a continuum model, the
nanoscale free-electron model �NFEM� �2–4�, exhibit such
front propagation into unstable cylinders.

Recent transmission electron microscopy experiments
�5–8� have observed gold and silver nanowires to form long
cylinders, with diameters of the order of 1 nm which are
stable for seconds at a time at room temperature. A theoret-
ical description within the NFEM shows �3,9� that such self-
assembly is natural if conditions are such that the atom mo-
bility allows the wire to explore its configuration space and
reach its equilibrium shape, as is the case at room tempera-
ture for these metals.

Due to the high number of surface atoms—with low co-
ordination numbers—in such nanowires, surface effects are
particularly important and favor wire breakup due to the
Rayleigh instability �10,11�. It has been shown, using the
NFEM �4,12�, that the quantum confinement of electrons in
the cross section of the wire provides electron-shell effects—
similar to those well-known in cluster physics �13�—which
compete with surface effects and stabilize cylindrical wires
for a finite range around magic radii �11,12�, as well as a
number of wires with broken axial symmetry �14,15�.

The NFEM �2–4� is a continuum model where the atomic
structure is replaced by a uniform, positively charged back-
ground and the emphasis is put on the electronic structure.
An extension of the model �3� includes ionic dynamics
through surface self-diffusion, which is expected to dominate
the structural dynamics in such thin wires. One of its impor-
tant predictions is that a random wire naturally evolves into a
universal equilibrium shape consisting of a perfect cylinder
of a magic radius, connected to thicker leads �3,9�. Recently,
the rich kink dynamics of the NFEM has been described �16�
and shown to be qualitatively similar to the thinning mecha-

nism of gold nanowires observed experimentally �17�, prov-
ing it to be a suitable, if simplified, model of the structural
dynamics of metal nanowires.

This paper is concerned with radii outside of the intervals
of stability and studies their dynamics under surface self-
diffusion. A localized perturbation to an unstable cylinder is
found to grow exponentially and to propagate along the un-
stable wire with a well-defined front, which is a coherent
pattern-forming front and can be either pulled or pushed de-
pending on the wire radius.

The paper is organized as follows: In Sec. II, the NFEM is
introduced and some of its main results directly relevant to
the present article are summarized. Numerical simulations of
the dynamics of an unstable cylinder are presented in Sec.
III, while the front propagation analysis is developed in Sec.
IV. Section V discusses the results and some experimental
setups that could detect front propagation into unstable metal
nanowires.

II. NANOSCALE FREE-ELECTRON MODEL

The NFEM is a continuum model of open metallic nano-
systems with an emphasis on the electronic structure, which
is treated exactly �2,4�. It is thus particularly suitable as a
model of metal nanowires and successfully describes many
of their equilibrium �2,11,12,15,18,19� and dynamical
�3,4,9,16,20� properties in simple physical terms.

The discrete atomic structure is replaced by a uniform,
positively charged background �jellium�, which provides a
confining potential for electrons. Electronic degrees of free-
dom are described using a free-electron model, thus neglect-
ing interactions, except inasmuch as they rescale macro-
scopic quantities such as the bulk energy density �B and the
surface tension �s �4,12,18�. This model is particularly suit-
able for simple metals, with good screening and a close-to-
spherical Fermi surface, such as those with a single
s-electron conduction band at the Fermi surface. Such con-
ditions are fulfilled for alkali metals like sodium and for
noble metals such as gold and silver, although d electrons
may play a role for noble metals.

While the NFEM has no such restriction, only axisym-
metric wires are considered in this paper. This choice greatly*buerki@physics.arizona.edu
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simplifies the numerical treatment of the dynamics, as the
wire shape can be described by a single radius function
R�z , t�. It is justified by the facts that �i� the most stable wires
are axisymmetric �14,15� and �ii� the dynamics tends to de-
crease surface area and thus further favors axisymmetric
wires.

A nanowire being an open system, the electronic energy is
given by the grand canonical potential �e. Like any exten-
sive thermodynamic quantity, �e can be written as a Weyl
expansion �21�—a series in geometrical quantities such as
system volume V and surface area S—complemented by a
mesoscopic, fluctuating contribution ��:

�e�R�z�� = �BV + �sS + �� , �1�

where the values of �B and �S may be chosen to match
the bulk properties of the metal to be described. As results
are independent of �B, its free-electron value �B
=−2EFkF

3 /15�2 is used, while the surface tension is set to
�s=1.256 N/m, a value appropriate for the description of
gold �22�.

Assuming the wire cross section varies slowly along the
wire �adiabatic approximation�, the mesoscopic contribution
may be written as

���R�z�� = �
0

L

dzVshell�R�z�� , �2�

where the electron-shell potential Vshell�R� can be computed
using a semiclassical approximation �4�. Vshell�R�, depicted
in Fig. 1 �top panel� for a cylindrical wire as a function of its
radius R, is responsible for stabilizing wires of magic radii,
which correspond to its deep minima.

The ionic dynamics is taken to be classical and can be
assumed to occur mainly through surface self-diffusion, as
most atoms in thin metal wires are surface atoms �3,23�. The
evolution equation for the radius function R�z , t� derives
from ionic mass conservation

�

Va

�R2�z,t�
�t

+
�

�z
Jz�z,t� = 0, �3�

where Va=3�2 /kF
3 is the volume of an atom and the z com-

ponent Jz of the total surface current is given by Fick’s law:

Jz = −
�SDS

kBT

2�R�z,t�
�1 + ��zR�2

��

�z
. �4�

Here �S and DS are, respectively, the surface density of atoms
and the surface self-diffusion coefficient, and �zR=�R /�z.

The precise value of DS is not known for most metals, but
it can be removed from the evolution equation by rescaling
time to the dimensionless variable 	=�0t, with the charac-
teristic temperature-dependent frequency �0=�SDSTF /T.
For comparison to experimental time scales, one can
estimate that for quasi-one-dimensional diffusion Ds
�
Da2 exp�−Es /kBT�, where 
D is the Debye frequency, a is
the lattice spacing, and Es is an activation energy comparable
to the energy of a single bond in the solid.

The chemical potential ��R�z�� of a surface atom can be
computed from the energy change due to the local addition

of the volume Va of an atom to the system. Within the Born-
Oppenheimer approximation and assuming the electrons act
as an incompressible fluid �4,12,24�, the chemical potential
is given �3� by the functional derivative ��R�z��
=Va / �2�R���e /�R�z�. Starting from Eqs. �1� and �2�, one
obtains

��R�z�� = �0 +
Va

2�R
�2�s � C�R�z��

�1 + ��zR�2
+

�Vshell

�R
	 , �5�

where �0=�BVa is the bulk chemical potential. Here

�C�R�z��=��1−
R�z

2R

1+��zR�2� is the local mean curvature of the

wire and arises from the functional derivative of the surface
term in Eq. �1�. The chemical potential of a cylinder
�cyl�R�
��R�z�=R� is plotted as a function of the radius R
in the middle panel of Fig. 1.

The appropriate boundary conditions when simulating a
cylinder, which in a real system is connected to larger leads
�3,9�, have been shown to be Neumann boundary conditions,
�zR=0 at both wire ends �3,20�.

Note that, despite the apparent simplicity of Eqs. �3�–�5�
as written above, the resulting partial differential equation
for R�z , t� is fourth order in z derivatives and highly nonlin-
ear. Its classical counterpart, with Vshell
0, has been exten-
sively studied �25–27�. It was shown to have stationary states
corresponding to shapes of constant mean curvature: the
sphere, the cylinder, and the unduloid of revolution, the latter

FIG. 1. Electron-shell potential Vshell�R� �top, in units of
10−3EFkF�, chemical potential �cyl�R� �middle, in units of EF�, and
stability coefficient ��R� �bottom, in units of EFkF

3� for a cylindrical
wire, as a function of its dimensionless radius kFR, where kF is the
Fermi wave vector. �The radius range is limited to that correspond-
ing to the simulations presented here. For a graph over a more
extended range, see Refs. �3,4,11�.� Vertical dashed lines in the
bottom panel mark the positions of conductance channel openings,
which drive the instability �11�. The top axis shows the conductance
values of linearly stable cylinders in units of the conductance quan-
tum, G0=2e2 /h.
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being always unstable. The addition of the electron-shell-
potential term, of quantum-mechanical origin, is responsible
for a rich dynamics, discussed extensively in Ref. �16� and in
this paper, as well as for the stabilization of the unduloid as
a stationary state �3,9�. Without this term, any cylinder
longer than its perimeter is unstable toward the Rayleigh
instability and breaks apart into spheres. In that case, the
system exhibits front propagation �28�, but there is no satu-
ration of the instability and the radius dependence of the
dynamics is trivial. Furthermore, nonlinear effects do not
seem to influence the front propagation.

A. Summary: Linear stability analysis

A linear stability analysis of cylindrical wires has been
performed within the NFEM �4,11,12,19�. The change in the
energy �1� due to a radius perturbation �R=�qbq exp�iqz�
was found to be

��e = L�
q

��R0;q��bq�2, �6�

so that the sign of ��R0 ;q� determines the linear stability of
a wire of radius R0 towards a perturbation of wave vector q.
Hence ��R0 ;q� has been named the stability coefficient. It
was further found that the global linear stability is essentially
determined by the long-wavelength limit �11,12,19� ��R0�

��R0 ;q=0�, with

��R0� = �−
2��S

R
+ �d2Vshell

dR2 −
1

R

dVshell

dR
	

R=R0

. �7�

Instabilities were found to result from a transverse
eigenenergy of the wire crossing the Fermi energy EF, thus
closing or opening a conduction channel �2,11�. These
thresholds are marked by vertical dashed lines in the plot of
��R� in the bottom panel of Fig. 1. Cylinders with radii in
the vicinity of “magic” radii—corresponding to minima of
the shell potential Vshell; see Fig. 1—are linearly stable, while
wires close to maxima of Vshell are unstable.

A linearized dynamical theory �12� shows that unstable
wires develop an exponentially growing instability with a
well-defined wavelength =2� /qmax, corresponding to the
maximally unstable mode, such that ��R0 ;qmax� is extremal.
This instability was argued to saturate and eventually lead to
a phase separation of the wire into thick and thin segments of
stable radii �12�. Simulations using the full dynamics, Eqs.
�3�–�5�, have confirmed this �3� and shown that the phase
separation occurs via a complex dynamics involving kink
interactions and annihilation �16�. In this paper, I analyze the
growth and propagation of such instabilities in greater detail.

III. INSTABILITY PROPAGATION

Results on the evolution of an unstable cylinder, including
the growth of a single-wavelength perturbation followed by
phase separation, were briefly presented in a Letter �3�. In
this section, I provide more details about simulations of the
growth and propagation of perturbed linearly unstable wires
as a function of the wire radius R0. An initially localized

perturbation is found to grow exponentially and propagate
with a well-defined front, which is analyzed in detail. A the-
oretical analysis of the front propagation is provided in Sec.
IV.

The initial condition for these simulations is an unstable
cylinder of radius R0—i.e., a radius such that ��R0��0.
Three lengths kFL=300, 400, and 500 have been considered.
A Gaussian perturbation of amplitude kF�R=0.01, localized
at the left boundary, z=0, is added to trigger the instability.
Results have been checked to be independent of the type,
amplitude, and extension of the initial perturbation, as long
as it is sufficiently localized �1�.

After a brief initial incubation period, during which the
amplitude of the perturbation decreases, it grows exponen-
tially and propagates along the wire. A well-defined front
forms and moves at a constant velocity, as illustrated in Fig.
2, where the wire perturbation ��z ,	�=R�z ,	�−R0 for a wire
with kFR0=11.65 is plotted at equidistant times 	, with a
vertical shift proportional to 	. Behind the front, a coherent
pattern consisting of a single-wavelength radius oscillation
forms and saturates at an amplitude kF���0.1–1, whose
value depends on the details of the shell potential Vshell �cf.
Fig. 1� in the vicinity of the unstable radius R0 considered.

A logarithmic plot of �the absolute value of� the wire per-
turbation ���z , t�� �see inset of Fig. 2� clearly shows its ex-
ponential decay ahead of the front, whose position zf is de-
fined as the point where the perturbation amplitude reaches a
certain threshold value c �29�. Tracking zf as a function of
time, the front velocity v can be extracted and is found to be
constant after an initial period when it is influenced by
boundary and initial conditions. Similarly, the wave vector q
and decay length � of the perturbation ahead of the front can
be extracted. Both are found to be constant after an initial
decrease during early evolution.

FIG. 2. Instability propagation for a wire of radius kFR0

=11.65 and length kFL=300: The main panel shows ��z�=R�z�
−R0 at equidistant times �shifted vertically for clarity�, illustrating a
typical time evolution of the instability propagation. In particular,
the coherent pattern left behind the front can be observed. The
right-hand side axis gives the dimensionless evolution time 	 for the
corresponding curves. The inset shows ���z�� at a given time 	
�180, on a logarithmic scale, illustrating its exponential decay
ahead of the front.
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In the simpler cases, further evolution of the wire behind
the front occurs on a timescale orders of magnitude longer
than the front propagation. It involves annihilation of kink
and antikink pairs—upward and downward steps in R�z�,
whose dynamics has been described in Ref. �16�—and even-
tually leads to phase separation into thick and thin segments
of stable cylinders �3,12�.

In other cases, however, nonlinear effects quickly take
over the dynamics behind the front and start pushing it. This
modifies its velocity, as well as the decay rate, and possibly
the wavelength ahead of the front. An example of such be-
havior is shown in Fig. 3, where log10 ���z ,	�� is plotted at
equidistant times �each curves shifted vertically� for a wire
with radius kFR=12.28. One can clearly see a second front
with a shorter decay length that progressively takes over the
initial front. Such a front will be referred to as a nonlinear
front, while the initial, slower front will be called linear.

The velocity, decay length, and wave vector of both fronts
can be extracted from the simulations. The three quantities
are plotted as open circles in Fig. 4 for the linear front, while
solid light �green� circles are used for the nonlinear front,
when it is detected. All three quantities are found to depend
nontrivially on the wire radius R0. They reach local extrema
simultaneously for values of R0 that correspond to minima of
the stability coefficient � �Fig. 1 and Eq. �7��—i.e., maxi-
mally unstable wires. The front velocity v and wave vector q
vanish, while the decay length � diverges, at the stability
boundary Rc, where ��Rc�=0. Roughly, it seems that a non-
linear front appears for wires with ��R0��0.1EFkF

3 .

IV. FRONT PROPAGATION ANALYSIS

In this section, I provide an analysis of the instability
propagation, showing in particular that the evolution of the
linear fronts—marked by open circles in Fig. 4—derives
from the linearized dynamics, hence the name, and is a typi-

cal example of front propagation into an unstable state. Fol-
lowing ideas from the linear marginal stability analysis of
Refs. �1,30�, much of the front dynamics can be understood
from the linearized evolution equation for the perturbation
��z , t�, which is

2�R0

Va

��

�t
= −

�0Va

EF
�2��sR0

�4�

�z4 − ��R0�
�2�

�z2 � . �8�

Assuming a front of the form ��z , t�=exp�i��t−kz��, with �
and k complex quantities, its dispersion relation

��k� = i
�0�sVa

2

EF
k2�k2 +

��R0�
2��sR0

	 �9�

is derived. It has been argued �30� that the front wave vector
k* is such that the front is marginally stable and thus satisfies
the conditions �1�

Im d�

dk


k*
= 0,

Im ��k*�
Im k* = d�

dk


k*
. �10�

This yields the front wave vector k*
q− i /�,

k* =
1

4
�−

��R0�
��sR0

��3 + �7 − i��7 − 1

3
	 , �11�

where the real part q determines the wave vector of the pat-
tern left behind the front and the inverse � of the imaginary
part corresponds to the decay length ahead of the front. They

FIG. 3. log10 ���z ,	� /�0� at equidistant times 	, shifted verti-
cally for clarity, for a wire of radius kFR=12.28 and length kFL
=500, showing an invasive mode. All curves are normalized by
�0
��z=0,	=	0�, where 	0 is the time of the bottom curve.

FIG. 4. �Color online� Instability wave vector q �top�, decay
length � �middle�, and front velocity v �bottom� as a function of
unstable wire radius R0. The solid lines give the results of the linear
theory, Eqs. �11� and �13�, and the circles are results extracted from
the full dynamical simulations �error bars are smaller than the sym-
bols, and therefore not plotted�. Open circles are used for the linear
front, while solid �green� circles correspond to nonlinear fronts. The
velocity in the bottom panel is given in units of v0=F�0.
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are respectively plotted as solid lines in Fig. 4 �top two pan-
els� and compare well with data extracted from the full non-
linear dynamics �open circles� of initial fronts. Small devia-
tions are observed for large values of �, but are a result of the
difficulty of determining a large decay length in a finite sys-
tem.

It is clear from Eq. �11� that the product

q · � =�3�3 + �7�
�7 − 1

� 3.2 �12�

is universal and does not depend on any wire parameters.
This has been verified within numerical accuracy for all wire
radii, as well as for two different values of �s �corresponding
to Au and Na�.

The front velocity v=Im���k*�� / Im k* is readily extracted
from Eq. �11� and is found to be

v =
�0�sVa

2

6EF

�17 + 7�7

3
�−

��R0�
��sR0

	3/2

. �13�

This result is plotted in Fig. 4 �bottom panel� as a solid line
and compared with linear-front velocities obtained from the
dynamical simulations �open circles�. Agreement between
the linear theory and full nonlinear dynamics is very good,
showing that the front propagation is indeed governed by the
linear dynamics.

Combining Eqs. �11� and �13�, one gets

v � �sq
3, �14�

so that the front velocity can be determined from the pattern
wavelength. This relation also holds within numerical accu-
racy in simulations for Au and Na.

Finally, as ��R�� ± �R−Rc� at the stability boundaries,
where ��Rc�=0, Eqs. �11� and �13� provide the scaling of v,
q, and � as �R−Rc � →0, which are

v � �R − Rc�3/2, �15�

q � �R − Rc�1/2, �16�

and

� � �R − Rc�−1/2. �17�

In cases where nonlinear effects take over the dynamics
behind the front, the marginally stable front satisfying Eqs.
�11�–�14� forms and propagates for a while, but at some
point it is “invaded” by a faster front. This “invading” front
has a larger q and a smaller �, and satisfies neither Eq. �12�
nor Eq. �14�. This is consistent with the nonlinear marginal-
stability mechanism discussed by van Saarloos �31� where,
for some range of parameters, the front becomes unstable to
an “invasion mode.” In this case, the evolution depends on
the full nonlinear dynamics, Eqs. �3�–�5�, and the front is
“pushed” by the invading mode, rather than “pulled” by the
exponentially growing instability �1�. The new front speed,
wave vector and decay length are consistent with the analysis

of Ref. �31�. Although the cause of the instability of the front
to the invasive mode is not clear, it seems to be related to the
existence of a “quasistable” wire—i.e., a wire for which
��R�, though still negative, is relatively small.

V. DISCUSSION AND CONCLUSIONS

Experimental verification of the dynamics of an unstable
wire may be, at least in part, possible. An unstable cylinder
can be prepared using a potential bias: As the magic radius
intervals vary with a bias applied along the wire �32�, a
stable cylindrical wire can be prepared at a finite bias V and
its stability modified by suddenly switching the bias off. If
the bias and wire radius are chosen appropriately, the wire
becomes unstable, and its dynamics can be observed using,
for example, transmission electron microscopy �5�. An alter-
native way of obtaining the same result is to stretch the wire
abruptly, so that it deforms elastically into an unstable cylin-
der. In both cases, the connection of the wire to macroscopic
leads acts as a localized perturbation at the end of the wire
triggering the instability propagation.

Actual observation of the front propagation would, how-
ever, be difficult as wire imperfections are likely to trigger
the instability at several places along the wire simulta-
neously. In addition, the experiment needs to be conducted at
room temperature for the metal to be soft enough to allow
surface diffusion, so that thermal fluctuations are likely to
have the same effect. Furthermore, the predicted radius os-
cillations are of the same size as the atomic granularity, and
the two may thus be difficult to distinguish.

The evolution of unstable wires, discussed in Sec. III,
provides an interesting system where ideas developed in the
context of front propagation into an unstable state �1,30,31�
can be successfully tested, as shown in Sec. IV. The instabil-
ity is found to grow exponentially ahead of a well-defined
front, leaving a coherent pattern behind it. In most cases, the
front is found to be pulled by the instability growth ahead of
it. Its propagation is thus governed by the linearized evolu-
tion equation �8�. Simple expressions for the front velocity v
and decay length �, as well as the pattern wave vector q have
been derived and found to be in good agreement with nu-
merical simulations using the full nonlinear dynamics.

In other cases, the linear evolution equation �8� fails to
explain the full front dynamics. The pulled front is found to
be invaded by a faster instability that pushes the front at its
higher velocity. In this case, the front parameters depend on
the full nonlinear dynamics. The presence of an invading
mode seems to correspond to quasistable wires, for which
��R0� is still negative, but small.
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